# Hans Reichenbach

Hans
Reichenbach
1891
1953

German-born American Philosopher of Science, Educator, Founded School of Logical Positivism in Berlin, Professor at the University of California

## Author Quotes

If heat were the affecting force, direct indications of its presence could be found which would not make use of geometry as an indirect method. ...direct evidence for the presence of heat is based on the fact that it affects different materials in different ways. ...The forces... which we have introduced... have two properties: (a) They affect all materials in the same way. (b) There are no insulating [or isolating] walls... the definition of the insulating wall may be added here: it is a covering made of any kind of material which does not act upon the enclosed object with forces having property a. Let us call the forces which have the properties a and b universal forces; all other forces are called differential forces. Then it can be said that differential forces, but not universal forces, are directly demonstrable.

The mathematician uses an indirect definition of congruence, making use of the fact that the axiom of parallels together with an additional condition can replace the definition of congruence.

Why is Einstein's theory better than Lorentz's theory? It would be a mistake to argue that Einstein's theory gives an explanation of Michelson's experiment, since it does not do so. Michelson's experiment is simply taken over as an axiom.

If the definition of simultaneity is given from a moving system, the spherical surface will result when Einstein's definition with ? = 1/2 is used, since it is this definition which makes the velocity of light equal in all directions.

The order of betweenness does not depend on mutual distances... betweenness is purely a relational order.

If we wish to express our ideas in terms of the concepts synthetic and analytic, we would have to point out that these concepts are applicable only to sentences that can be either true of false, and not to definitions. The mathematical axioms are therefore neither synthetic nor analytic, but definitions... Hence the question of whether axioms are a priori becomes pointless since they are arbitrary.

The philosopher of science is not much interested in the thought processes which lead to scientific discoveries; he looks for a logical analysis of the completed theory, including the establishing its validity. That is, he is not interested in the context of discovery, but in the context of justification.

Introduce the auxiliary concept of first-signal... defined as the fastest message carrier between any two points in space. We now send a first-signal from P, calling the event of departure E1... The event of its arrival at P' is called E'. Simultaneously with the arrival of this signal, another first signal is sent from P'. The arrival of this signal at P is the event E2... the time interval between E1 and E2 is coordinated to the event E', [E1 is earlier than E' and E2 is later than E'] and every event of this time interval except for the endpoints is indeterminate as to the time order relative to E'.

The principle of the limiting character of the velocity of light. This statement... is not an arbitrary assumption but a physical law based on experience. In making this statement, physics does not commit the fallacy of regarding absence of knowledge as evidence for knowledge to the contrary. It is not absence of knowledge of faster signals, but positive experience which has taught us that the velocity of light cannot be exceeded. For all physical processes the velocity of light has the property of an infinite velocity. In order to accelerate a body to the velocity of light, an infinite amount of energy would be required, and it is therefore physically impossible for any object to obtain this speed. This result was confirmed by measurements performed on electrons. The kinetic energy of a mass point grows more rapidly than the square of its velocity, and would become infinite for the speed of light.

It appears that the solution of the problem of time and space is reserved to philosophers who, like Leibniz, are mathematicians, or to mathematicians who, like Einstein, are philosophers.

The relation of betweenness on the torus is undetermined for curves that cannot be contracted to a point [e.g., circles around a doughnut hole], i.e., for three of such curves it is not uniquely determined which of them lies between the other two. ..This indeterminateness... has the consequence that such a curve [alone] does not divide the surface of the torus into two separate domains; between points to the "right" and to the "left" of the line.

It is remarkable that this generalization of plane geometry to surface geometry is identical with that generalization of geometry which originated from the analysis of the axiom of parallels. ...the construction of non-Euclidean geometries could have been equally well based upon the elimination of other axioms. It was perhaps due to an intuitive feeling for theoretical fruitfulness that the criticism always centered around the axiom of parallels. For in this way the axiomatic basis was created for that extension of geometry in which the metric appears as an independent variable. Once the significance of the metric as the characteristic feature of the plane has been recognized from the viewpoint of Gauss' plane theory, it is easy to point out, conversely, its connection with the axiom of parallels. The property of the straight line as being the shortest connection between two points can be transferred to curved surfaces, and leads to the concept of straightest line; on the surface of the sphere the great circles play the role of the shortest line of connection... analogous to that of the straight line on the plane. Yet while the great circles as "straight lines" share the most important property with those of the plane, they are distinct from the latter with respect to the axiom of the parallels: all great circles of the sphere intersect and therefore there are no parallels among these "straight lines"... If this idea is carried through, and all axioms are formulated on the understanding that by "straight lines" are meant the great circles of the sphere and by "plane" is meant the surface of the sphere, it turns out that this system of elements satisfies the system of axioms within two dimensions which is nearly identical in all of it statements with the axiomatic system of Euclidean geometry; the only exception is the formulation of the axiom of the parallels. The geometry of the spherical surface can be viewed as the realization of a two-dimensional non-Euclidean geometry: the denial of the axiom of the parallels singles out that generalization of geometry which occurs in the transition from the plane to the curve surface.

The statement that although the past can be recorded, the future cannot. It is translatable into the statistical statement: Isolated states of order are always post-interaction states, never pre-interaction states.

Light signals alone provide the metrical structure of the four-dimensional space-time continuum. The construction may be called light axioms.

The stereographic projection of the spherical surface. From the north pole P we draw radial lines to project every point of the surface of the sphere upon the horizontal plane [below, perpendicular to a line joining it to P and the sphere's center]. In general this transformation is unique and continuous, although the metrical relations are distorted; for the point P, however, it shows a singularity. Point P is mapped upon the infinite; i.e., no finitely located point of the plane corresponds to it. It can be shown that every transformation possesses a singularity in at least one point. The surface of the sphere is therefore called topologically different from the plane. Only a "sphere without a north pole" [point] would be topologically equivalent to a plane... such a sphere has a point-shaped hole without a boundary and is no longer a closed surface.

Occasionally one speaks... of signals or signal chains. It should be noted that the word signal means the transmission of signs and hence concerns the very principle of causal order.

The surfaces of three-dimensional space are distinguished from each other not only by their curvature but also by certain more general properties. A spherical surface, for instance, differs from a plane not only by its roundness but also by its finiteness. Finiteness is a holistic property. The sphere as a whole has a character different from that of a plane. A spherical surface made from rubber, such as a balloon, can be twisted so that its geometry changes... but it cannot be distorted in such a way as that it will cover a plane. All surfaces obtained by distortion of the rubber sphere possess the same holistic properties; they are closed and finite. The plane as a whole has the property of being open; its straight lines are not closed. This feature is mathematically expressed as follows. Every surface can be mapped upon another one by the coordination of each point of one surface to a point of the other surface, as illustrated by the projection of a shadow picture by light rays. For surfaces with the same holistic properties it is possible to carry through this transformation uniquely and continuously in all points. Uniquely means: one and only one point of one surface corresponds to a given point of the other surface, and vice versa. Continuously means: neighborhood relations in infinitesimal domains are preserved; no tearing of the surface or shifting of relative positions of points occurs at any place. For surfaces with different holistic properties, such a transformation can be carried through locally, but there is no single transformation for the whole surface.

Absolute time would exist in a causal structure for which the concept indeterminate as to time order lends to a unique simultaneity, i.e., for which there is no finite interval of time between the departure and return of a first-signal...

Once a definition of congruence is given, the choice of geometry is no longer in our hands; rather, the geometry is now an empirical fact.

There is no pure visualization in the sense of a priori philosophies; every visualization is determined by previous sense perceptions, and any separation into perceptual space and space of visualization is not permissible, since the specifically visual elements of the imagination are derived from perceptual space. What led to the mistaken conception of pure visualization was rather an improper interpretation of the normative function... an essential element of all visual representations. Indeed, all arguments which have been introduced for the distinction of perceptual space and space of visualization are based on this normative component of the imagination.

Although it is admitted that certain differences cannot be verified by experiment, we should not infer from this fact that they do not exist... we are accused of having confused subjective inability with objective indeterminacy.

Perceptual space is not a special space in addition to physical space, but physical space which we endow with a special subjective metric... apart from the definition of congruence in physics and that based on perception, there is no third one derived from pure visualization. Any such third definition is nothing but the definition of physical congruence to which our normative function has adjusted the subjective experience of congruence.

This fact... proves that space measurements are reducible to time measurements. Time is therefore logically prior to space.

Carnap calls such concepts as point, straight line, etc., which are given by implicit definitions, improper concepts. Their peculiarity rests on the fact that they do not characterize a thing by its properties, but by its relation to other things. Consider for example the concept of the last car of a train. Whether or not a particular car falls under this description does not depend on its properties but on its position relative to other cars. We could therefore speak of relative concepts, but would have to extend the meaning of this term to apply not only to relations but also to the elements of the relations.

Philosophy is regarded by many as inseparable from speculation... Philosophy has proceeded from speculation to science.